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1 Summary

This paper describes how a countable domain can span an uncountable uni-
verse of Neumann-Bernays-Gödel set theory (NBG).
We start by choosing a countable domain, map the ’∈’ and ’is a set’ rela-
tions to it and assume the set axioms for granted. We then proof, that the
NBG-axioms are satisfied within this countable domain. The items of the
universe are formulars with one free parameter. The formulars have a dual
role. On one hand they are simply labels for classes, on the other hand their
logic provides the mapping rules to establish the element relationship.

2 Introduction

The theory of the is article is based on LI propositional logic, the Peano
axioms and the core set axioms. The latter will be introduced during the
construction as mapping rules. In this writing we are based on Neumann-
Bernay-Gödel (NBG) set theory as defined in [Gödel]. For the basics in
mathematical logic we follow [Ebbinghaus]. The language LNBG of it con-
sists of the symbols ∧,∨,→,↔,¬,=,∀,∃, (, ), the variables v0, v1..., va...vz,
the binary relationship ∈ and the unary relationship symbols M (’is a set’)
and Cls (’is a class’).
The reader will be familiar with the usual concepts of set theory and we will
mostly follow [Gödel] with definitions and symbols. So for functions we have
the range first, the domain second in the ordered pairs (x,y). P(x) is the
powerset(-class) of x. If F is a function we write Fnc(F) with the domain
Dom(F) and the range Rng(F) and if A ⊆ Dom(F ) we write RngF (A) to
designate the range of F confined to A. On is the class of ordinals.
As usual we use uppercase characters to identify classes and lowercase char-
acters for symbols, which satisfy M(x) (x is a set). If M is a model of NBG
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set theory we will write ∈M , V M , LM for the element relationship, class of all
sets and the constructible sets. We call a formular unary, if it has exactly
one free parameter. Greek letters designate logical expressions. φ̃ shall de-
note the formular, which is obtained from φ by restricting all quantifiers and
parameters to sets and˜shall allways indicate a formular having this property
or changed to have that property.

Definition 1. Let M be a model of NBG. A class (set) A of M is called
0-definable, if there is a unary formula φ such that x ∈ A ↔ φ̃(x).

Lemma 1. 0-definability
If φ(v0, v1, .., vn) is a formula of LNBG then there is for each assignment
v1, ..vn with 0-definable sets [ψ1], ..., [ψn] a unary formular ψ such that ψ(x) =
φ̃(x, [ψ1], ..., [ψn])

Proof. Let φ(v0, v1, ...vn) be a formula with vi 0-definable sets and ψi(x) their
defining unary formulas. Define σi(vi) := ∀va : va ∈ vi ↔ ψ̃i(va).
Then ψ(v0) := ∃v1, ...vn (σ1(v1)∧ ...∧σn(vn)∧ φ̃(v0, v1...vn) ) is an equivalent
definition.

This allows us to work with formulas having more than one parameters.

3 The Structure D

The underlying objects of the structure D are the unary formulars of LNBG.
These formulars have a dual role. On one hand they are raw classes and as
such their formular is just a lable for the class. We will write [φ], Xφ or xφ to
identify these classes. On the other hand the formular provides the mapping
logic to identify the elements of the class and in this role we will write φ̃, since
only the bounded formular is relevant for this purpose, as we are looking for
NBG.
It is important to emphasize, that in this model equal classes may not be
identical: ¬(A = B → A ≡ B).
The following symbols are frequently used from now on:
φ̃0 := ¬x = x
∅ := [φ0] (empty set)
φ̃ω := ∀v :

(
∅ ∈ v ∧ ∀u :

(
(u ∈ v) → (u ∪ {u}) ∈ v

) )
→ x ∈ v

ω := [φω] (the integers)
The mapping rules need to define the relations ∈ and M of LNBG. Since

we want the model only to demonstrate how countably many objects can
span an uncountable universe, the mapping rules will include the core ax-
ioms of set theory.
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The element relationship is defined by

Rule (R0). ∀x : x ∈ [φ] ↔ φ̃(x) (definability)
By this rule [φ0] = [¬x = x] is the empty set.

Rule (R8). (¬A = ∅) → ∃u : [u ∈ A ∧ (u ∩ A) = ∅)] (regularity)

The unary M relationship is defined by:

Rule (R1). (∀x : x ∈ A↔ x ∈ B) ↔ A = B (extension)

Rule (R2). X ∈ Y →M(X) (elements are sets)

Rule (R3). ∀v1, v2 :M([v0 = v1 ∨ v0 = v2] (pair)

Note that {v1, v2} can be {v1, v2} , {v1}, {v2} or ∅ depending on whether
none, only one or both parameters are sets. This follows the practice in
[Gödel].

Rule (R4). (¬ ω = ∅) ∧ M(ω) (infinity)

Rule (R5). ∀v1 :M([∃va : (v0 ∈ va) ∧ (va ∈ v1)]) (union set)

Rule (R6). ∀v1 :M([v0 ⊆ v1]) (power set)

Rule (R7).
(
Fnc(A) ∧ ( x ⊆ Dom(A) )

)
→ M (RngA(x ) ) (substitution)

4 D is a model of NBG less AC

Theorem 1. D is a model of NBG less the global axiom of choice.

The axioms of NBG are [Gödel]:

Axiom (A1). Cls(x) (every x is a class). There is nothing to proof.

Axiom (A2). X ∈ Y →M(X). This is rule R2 of D

Axiom (A3). ∀u : [u ∈ X ↔ u ∈ Y ] → X = Y (extension). See rule R0.

Axiom (A4). ∀x, y : ∃z : ∀u : [u ∈ z ↔ u = x ∨ u = y] (pairing). See rule
R3 of D

Axiom (B). For every formular φ̃ which is bound to sets1:
∀v1, .., vn : ∃A : ∀x : x ∈ A↔ φ̃(x, v1, ..., vn)(comprehension)

1instead of the axioms B1-B8 we utilize here the equivalent axiom schema from Gödel’s
M4
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Proof. Let vi = [ψi]. Then by lemma 1 and because of the construction of D
there is a formular ψ̃(x) = φ̃(x, [ψ1], ..., [ψn]). Then A = [ψ] is the required
class.

Axiom (C1). ∃a : {¬
(
a = ∅∧∀x : [x ∈ a→ ∃y : [y ∈ a∧x ⊂ y] ]} (infinity).

This follows from rule R4 of D with ω being the requested set.

Axiom (C2). ∀x : ∃y : ∀u, v : [u ∈ v ∧ v ∈ x→ u ∈ y ] (union). See rule R5

Axiom (C3). ∀x : ∃y : [u ⊆ x→ u ∈ y ] (power set). This follows from R6.

Axiom (C4). ∀x : ∀A : {Fnc(A) → ∃y : ∀u : [ u ∈ y ↔ ∃v : [v ∈ x ∧(u, v) ∈
A ] ]} (substitution)

Proof. y = RngA(x ∩ Dom(A)) = [∃v1 : v1 ∈ x ∧ (v0 , v1 ) ∈ A] is by rule R7
a set and satisfies C4.

Axiom (D). (¬A = ∅) → ∃u [u ∈ A ∧ (u ∩ A) = ∅)] (regularity). This is
rule R8 of D.
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